skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bertello, Luca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The coronal heating problem has been a major challenge in solar physics, and a tremendous amount of effort has been made over the past several decades to solve it. In this paper, we aim at answering how the physical processes behind the Alfvén wave turbulent heating adopted in the Alfvén Wave Solar atmosphere Model (AWSoM) unfold in individual plasma loops in an active region (AR). We perform comprehensive investigations in a statistical manner on the wave dissipation and reflection, temperature distribution, heating scaling laws, and energy balance along the loops, providing in-depth insights into the energy allocation in the lower solar atmosphere. We demonstrate that our 3D global model with a physics-based phenomenological formulation for the Alfvén wave turbulent heating yields a heating rate exponentially decreasing from loop footpoints to top, which had been empirically assumed in the past literature. A detailed differential emission measure (DEM) analysis of the AR is also performed, and the simulation compares favorably with DEM curves obtained from Hinode/Extreme-ultraviolet Imaging Spectrometer observations. This is the first work to examine the detailed AR energetics of our AWSoM model with high numerical resolution and further demonstrates the capabilities of low-frequency Alfvén wave turbulent heating in producing realistic plasma properties and energetics in an AR. 
    more » « less
  2. MAGFiLO is a dataset of manually annotated solar filaments from H-Alpha observations captured by the Global Oscillation Network Group (GONG). This dataset includes over ten thousand annotated filaments, spanning the years 2011 through 2022. Each annotation details one filament's segmentation, minimum bounding box, spine, and magnetic field chirality. MAGFiLO is the first dataset of its size, enabling advanced deep learning models to identify filaments and their features with unprecedented precision. It also provides a testbed for solar physicists interested in large-scale analysis of filaments. 
    more » « less
  3. Abstract We explore the performance of the Alfvén Wave Solar atmosphere Model with near-real-time (NRT) synoptic maps of the photospheric vector magnetic field. These maps, produced by assimilating data from the Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory, use a different method developed at the National Solar Observatory (NSO) to provide a near contemporaneous source of data to drive numerical models. Here, we apply these NSO-HMI-NRT maps to simulate three full Carrington rotations: 2107.69 (centered on the 2011 March 7 20:12 CME event), 2123.5 (centered on 2012 May 11), and 2219.12 (centered on the 2019 July 2 solar eclipse), which together cover various activity levels for solar cycle 24. We show the simulation results, which reproduce both extreme ultraviolet emission from the low corona while simultaneously matching in situ observations at 1 au as well as quantify the total unsigned open magnetic flux from these maps. 
    more » « less
  4. Abstract For the first time, we simulate the detailed spectral line emission from a solar active region (AR) with the Alfvén Wave Solar Model (AWSoM). We select an AR appearing near disk center on 2018 July 13 and use the National Solar Observatory’s Helioseismic and Magnetic Imager synoptic magnetogram to specify the magnetic field at the model’s inner boundary. To resolve small-scale magnetic features, we apply adaptive mesh refinement with a horizontal spatial resolution of 0°.35 (4.5 Mm), four times higher than the background corona. We then apply the SPECTRUM code, using CHIANTI spectral emissivities, to calculate spectral lines forming at temperatures ranging from 0.5 to 3 MK. Comparisons are made between the simulated line intensities and those observed by Hinode/Extreme-ultraviolet Imaging Spectrometer where we find close agreement across a wide range of loop sizes and temperatures (about 20% relative error for both the loop top and footpoints at a temperature of about 1.5 MK). We also simulate and compare Doppler velocities and find that simulated flow patterns are of comparable magnitude to what is observed. Our results demonstrate the broad applicability of the low-frequency AWSoM for explaining the heating of coronal loops. 
    more » « less
  5. Abstract From 1915 to 1985 the monitoring program of the Mount Wilson Observatory, one of the Observatories of the Carnegie Institution of Washington, has taken over 35,000 daily images (spectroheliograms) of the Sun in the chromospheric resonance line of CaiiK. This important database constitutes a unique resource for a variety of retrospective analyses of the state of solar magnetism on multidecadal timescales. These observations may also hold the key for untangling some of the mysteries behind the solar dynamo, which in turn could result in a better predictive capability for current dynamo models. We describe here a procedure to calibrate and rescale these images so that homogeneous Carrington synoptic maps can be derived for the whole period covered by these observations. Temporal variations in full-disk chromospheric activity clearly show the signature of the 11 yr solar cycle, but no evidence is found for a statistically significant north/south hemispheric asymmetry. Using a feature-tracking technique we were also able to obtain the average solar rotation profile. We find no indication of any detectable periodicity in the temporal behavior of the orthogonalized rotation rate coefficients, suggesting the global chromospheric dynamics has not changed during the 70 years investigated in this work. We found also no significant evidence in our analysis for a hemispheric asymmetry in rotation rates. 
    more » « less
  6. Context. Systematic observations of magnetic field strength and polarity in sunspots began at Mount Wilson Observatory (MWO), USA in early 1917. Except for a few brief interruptions, this historical dataset has continued until the present. Aims. Sunspot field strength and polarity observations are critical in our project of reconstructing the solar magnetic field over the last hundred years. We provide a detailed description of the newly digitized dataset of drawings of sunspot magnetic field observations. Methods. The digitization of MWO drawings is based on a software package that we developed. It includes a semiautomatic selection of solar limbs and other features of the drawing, and a manual entry of the time of observations, measured field strength, and other notes handwritten on each drawing. The data are preserved in an MySQL database. Results. We provide a brief history of the project and describe the results from digitizing this historical dataset. We also provide a summary of the final dataset and describe its known limitations. Finally, we compare the sunspot magnetic field measurements with those from other instruments, and demonstrate that, if needed, the dataset could be continued using modern observations such as, for example, the Vector Stokes Magnetograph on the Synoptic Optical Long-term Investigations of the Sun platform. 
    more » « less
  7. This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere. 
    more » « less